人臉識別是這些年一直都比較火的詞,著眼于人工智能的發展和相應技術的不斷進步,人臉識別這種新的識別方式以越來越快的方式滲透到我們的現實生活中。那么,什么是人臉識別,有什么優缺點,有哪些應用范圍,今天我們就來聊聊。
人臉識別系統的研究時間比較早,始于20世紀60年代,80年代后隨著計算機技術和光學成像技術的發展得到提高,而真正進入初級的應用階段則在90年后期,并且以美國、德國和日本的技術實現為主;人臉識別系統成功的關鍵在于是否擁有尖端的核心算法,并使識別結果具有實用化的識別率和識別速度;“人臉識別系統”集成了人工智能、機器識別、機器學習、模型理論、專家系統、視頻圖像處理等多種專業技術,同時需結合中間值處理的理論與實現,是生物特征識別的最新應用,其核心技術的實現,展現了弱人工智能向強人工智能的轉化。
人臉識別分廣義和狹義兩種:
廣義的人臉識別實際包括構建人臉識別系統的一系列相關技術,包括人臉圖像采集、人臉定位、人臉識別預處理、身份確認以及身份查找等;而狹義的人臉識別特指通過人臉進行身份確認或者身份查找的技術或系統。
從本質上說人臉識別是一項熱門的計算機技術研究領域,它屬于生物特征識別技術,是對生物體(一般特指人)本身的生物特征來區分生物體個體。生物特征識別技術所研究的生物特征包括臉、指紋、手掌紋、虹膜、視網膜、聲音(語音)、體形、個人習慣(例如敲擊鍵盤的力度和頻率、簽字)等,相應的識別技術就有人臉識別、指紋識別、掌紋識別、虹膜識別、視網膜識別、語音識別(用語音識別可以進行身份識別,也可以進行語音內容的識別,只有前者屬于生物特征識別技術)、體形識別、鍵盤敲擊識別、簽字識別等。
人臉識別的優勢在于其自然性和不被被測個體察覺的特點。
所謂自然性,是指該識別方式同人類(甚至其他生物)進行個體識別時所利用的生物特征相同。例如人臉識別,人類也是通過觀察比較人臉區分和確認身份的,另外具有自然性的識別還有語音識別、體形識別等,而指紋識別、虹膜識別等都不具有自然性,因為人類或者其他生物并不通過此類生物特征區別個體。
不被察覺的特點對于一種識別方法也很重要,這會使該識別方法不令人反感,并且因為不容易引起人的注意而不容易被欺騙。人臉識別具有這方面的特點,它完全利用可見光獲取人臉圖象信息,而不同于指紋識別或者虹膜識別,需要利用電子壓力傳感器采集指紋,或者利用紅外線采集虹膜圖象,這些特殊的采集方式很容易被人察覺,從而更有可能被偽裝欺騙。
雖然人臉識別有很多其他識別無法比擬的優點,但是它本身也存在許多困難。人臉識別被認為是生物特征識別領域甚至人工智能領域最困難的研究課題之一。人臉識別的困難主要是人臉作為生物特征的特點所帶來的。人臉在視覺上的特點是:
不同個體之間的區別不大,所有的人臉的結構都相似,甚至人臉器官的結構外形都很相似。這樣的特點對于利用人臉進行定位是有利的,但是對于利用人臉區分人類個體是不利的。
人臉的外形很不穩定,人可以通過臉部的變化產生很多表情,而在不同觀察角度,人臉的視覺圖象也相差很大,另外,人臉識別還受光照條件(例如白天和夜晚,室內和室外等)、人臉的很多遮蓋物(例如口罩、墨鏡、頭發、胡須等)、年齡、拍攝的姿態角度等多方面因素的影響。
在人臉識別中,第一類的變化是應該放大而作為區分個體的標準的,而第二類的變化應該消除,因為它們可以代表同一個個體。通常稱第一類變化為類間變化(inter-class difference),而稱第二類變化為類內變化(intra-class difference)。對于人臉,類內變化往往大于類間變化,從而使在受類內變化干擾的情況下利用類間變化區分個體變得異常困難
人臉識別的應用主要有:
門禁系統:受安全保護的地區可以通過人臉識別辨識試圖進入者的身份,比如監獄、看守所、小區、學校等。
攝像監視系統:在例如銀行、機場、體育場、商場、自選商場等公共場所對人群進行監視,以達到身份識別的目的。例如在機場安裝監視系統以防止恐怖分子登機。
網絡應用:利用人臉識別輔助信用卡網絡支付,以防止非信用卡的擁有者使用信用卡,社保支付防止冒領等。
學生考勤系統:香港及澳門的中、小學已開始將智能卡配合人臉識別來為學生進行每天的出席點名記錄。
相機:新型的數碼相機已內置人臉識別功能以輔助拍攝人物時對焦。
智能手機:解鎖手機、識別使用者,如Android 4.0以上,iPhone X。
人證核驗一體機:核驗持證人和證件照是不是同一個人,主要用在酒店前臺、稅務局、醫院等。
當然,隨著技術的不斷深入發展,人臉識別應用的范圍將會越來月廣,操作上也會越來越人性化,未來人臉識別將會改變我們的生活方式。